Computer Adaptive Testing and Vertical Scales for the Measurement of Growth

Connecticut Assessment Forum
August 2012

Hariharan Swaminathan
H. Jane Rogers
Norma Sinclair
Mohamed Dirir
CT has joined the Smarter Balanced Assessment Consortium (SBAC), a consortium of states that have agreed to a common core of educational standards and a common set of assessments.
Consists of 21 governing states and 6 advisory states

Common assessments to begin in 2014-2015

- Based on Common Core State Standards adopted by 45 states, District of Columbia, and 3 territories
- Grades 3-8 and 11 tested
- Subjects: Mathematics and English Language Arts
- Goal: College and career-readiness
- Testing Method: Computer Adaptive Testing
- Performance Report: Vertical scale scores and grade-specific achievement levels
Why computer adaptive testing (CAT)?
Some necessary background
Fundamental Concepts of Educational Measurement

1. An individual has a “true” but unobservable ability or proficiency level.

2. Our task is to determine this proficiency level by using a measuring instrument, i.e., a TEST.

3. In general, we cannot measure this proficiency perfectly – we can only measure it with some error.

4. We want this error to be as small as possible.
5. We cannot measure this error directly. The traditional approach is to estimate the Standard Deviation of the Error, known as the **Standard Error of Measurement (SEM)** in a population of examinees and use the SEM as an indicator of the average precision with which true proficiency is measured.
6. SEM is closely related to Score Reliability

\[
\text{SEM} \propto \sqrt{1 - \text{Reliability}}
\]

When Score Reliability is high, SEM is low and vice versa.

SEM can be reduced (reliability increased) by:

- increasing the test length
- assembling test items carefully
Increasing test length is clearly not an option in many situations.

Assembling test items to yield a given reliability is difficult.
An Alternative Measurement Theory:

ITEM RESPONSE THEORY
Item Response Theory (IRT)

IRT is a powerful measurement framework based on mathematical models of examinee performance.

IRT became feasible for practical testing purposes only in the 1970s with the increasing power and availability of computers and software.

Nearly all large-scale assessments today are based on IRT.
Features of IRT

When an IRT model fits the data,

Item parameters are **invariant** across subpopulations
- *items can be “calibrated” using different groups of examinees*
Features of IRT

When an IRT model fits the data,

Proficiency parameters are invariant across test forms
- examinees’ scores can be compared even when they take different tests
Features of IRT

When an IRT model fits the data,

Measurement precision can be calculated at every level of proficiency
- each examinee has his/her own standard error of measurement (SEM)
- important because examinees at the extremes are measured less precisely than those in the middle
How is IRT Used in Large-Scale Assessments?

- **Test construction**
 - items can be chosen to obtain a desired level of measurement precision in any region of the proficiency continuum

- **Equating of test forms**
 - scores from different forms can easily be placed on a common scale
How is IRT Used in Large-Scale Assessments?

- **Vertical scaling**
 - examinees’ performance in different grades or years can be placed on a common scale to determine growth

- **Adaptive testing**
 - examinees can be administered items matched to their proficiency levels to more quickly and precisely determine their proficiency
How does IRT provide all these benefits?
Principles of IRT

1. An examinee has a certain level of proficiency that cannot be directly observed (i.e., is a latent variable)

 In practice, we generally assume only one underlying dimension, but multidimensional models are available
Principles of IRT

2. The examinee’s proficiency level and the characteristics of a test item determine the examinee’s probability of a particular response to the item.

For dichotomous responses, the higher an examinee’s proficiency, the higher the probability of a correct response.
Principles of IRT

3. IRT models specify a mathematical relationship between examinee proficiency and the probability of a particular response to the item
The exact form of an IRT model depends on

1. The nature of examinee proficiency
 (one dimension or more than one)
2. The type of response
 (dichotomous or polytomous)
3. The number of item characteristics
 assumed to influence performance on the item
4. The mathematical function used
IRT Item Parameters

IRT models specify up to three item characteristic that influence the probability of a given response
IRT Item Parameters

1. Difficulty
 the level of proficiency needed to have a 50% chance of answering correctly

2. Discrimination
 the rate of change in the probability of a correct response as proficiency increases

3. “Guessing” (dichotomous response models only)
 the probability that a very low proficiency examinee can answer the item correctly
Dichotomous Item Response Models

- One-parameter model
 Items differ only in difficulty

- Two-parameter model
 Items differ in difficulty and discrimination

- Three-parameter model
 Items differ in difficulty, discrimination, and susceptibility to guessing
One-Parameter (Rasch) Model

$\theta = -1.5$
One-Parameter (Rasch) Model

Theta (Proficiency)

Probability of Correct Response

-5 -4 -3 -2 -1 0 1 2 3 4 5

b = -1.5

b = 0
One-Parameter (Rasch) Model

Probability of Correct Response

Theta (Proficiency)

b = -1.5
b = 0
b = 1.5
Three-Parameter Model

Theta (Proficiency)

Probability of Correct Response

c - Lower Asymptote
Three-Parameter Model

Theta (Proficiency)

Probability of Correct Response

a = 2.0
b = 0.0
c = 0.1

a = 0.8
b = 1.5
c = 0.1

a = 0.5
b = -0.5
c = 0.0
Standard Error of Measurement in IRT

• Rather than using the concept of SEM, its inverse is used to assess the “information” provided by the test score about an examinee.

\[
\text{INFORMATION} = \frac{1}{(\text{SEM})^2}
\]

The smaller the SEM, the greater the information
• The amount of information provided by the test depends on the examinee’s proficiency level

• Each item contributes its information to the test. The sum of the ITEM INFORMATION functions is the TEST INFORMATION function

Items can be selected to maximize information in desired regions of the proficiency continuum
Item Information Functions

- Bell-shaped
- Peak is at or near difficulty value b
 an item provides greatest information at proficiency values near the difficulty
- Height depends on discrimination
 more discriminating items provide greater information
- Items with low c provide greatest information
 guessing reduces information
Item and Test Information Functions
Importance of Information Functions

- We can construct a bank of items with known characteristics.
- We can construct tests with desired measurement precision in any region of the proficiency continuum.
IRT and CAT

- The invariance property of IRT parameters along with the availability of item and test information functions provide the basis for CAT:

 We can “tailor” a test to suit the proficiency level of an examinee while maintaining comparability of scores

 We can administer items sequentially and calculate test information at each stage to achieve desired measurement precision
An Adaptive Testing Scheme

1. Administer an item of medium difficulty.

2. If the response is correct, administer a more difficult item; if incorrect, administer an easier item.

3. Continue until at least one item is answered correctly or incorrectly (usually five items or fewer).
An Adaptive Testing Scheme

4. Estimate the proficiency level of the examinee based on their prior responses. Select and administer the item that provides maximum information at this proficiency level.

5. Continue adaptive administration until the stopping criterion is reached.

Stopping criterion may be based on desired standard error or fixed test length
An Adaptive Testing Scheme

6. Place the final proficiency estimate and its standard error on the reporting scale - usually a linear transformation.

Final proficiency scores are on a common scale and can be compared across examinees even though each examinee took a unique set of items.
With this adaptive sequence, we can reach a level of precision (SEM, and hence reliability level) with fewer items than with a traditional linear test.

In practice, we have to fine tune this approach and modify it to satisfy a set of requirements and constraints.
Issues with the Simple CAT

- Over-exposure of items

Items with high discriminations provide the most information, so these items are administered more often if not controlled.
Issues with the Simple CAT

Possible exposure control mechanisms:

1. Calculate a set of parameters that control the frequency with which each item is administered if selected

2. Choose less discriminating items in the early stages of the test and save the more discriminating items for later when proficiency has been better targeted
Content constraints have to be imposed to satisfy validity related requirements.

The test for each examinee must meet test specifications so items must be selected based on content as well as information.
Requirements for CAT

1. There must be a large enough item bank.

2. There must be sufficient existing examinee response data on each item in the bank to fit an IRT model (calibrate).

3. An IRT model must provide adequate fit to the response data.

4. The calibrated item bank must contain items of sufficiently heterogeneous difficulty.
IRT, CAT and Vertical Scales for Measuring Growth

- Item parameters for items across grades can be placed on a common scale through an appropriate calibration design.
- Students in each grade will be administered a CAT that meets content specifications for that grade.
- Proficiency estimates across grades will be on a common scale because the items have been calibrated on the vertical scale.
Why Vertical Scales?

- Vertical scales are the best tool to measure growth as students go from grade to grade
- They provide interpretable score changes over time and across grades
- They provide a clear picture of grade-specific achievement levels
- Caution: vertical scales need careful development and constant maintenance
What is Student Achievement Growth?

- **FED definition:** The change in achievement for an individual student between two or more points in time

- **Requirement:** Examine achievement growth of same student across grades

- **Students’ score change or growth can be aggregated to higher units (school, district, etc.)**
What is Student Achievement Growth?

“Without continual growth …, achievement, and success have no meaning.”
Benjamin Franklin

Does the following show achievement growth?

- The percent of 7th grade students in District A at/above goal was 65 last year, and 68 this year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Goal</th>
<th>Not Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>65%</td>
<td>35%</td>
</tr>
<tr>
<td>2012</td>
<td>68%</td>
<td>32%</td>
</tr>
</tbody>
</table>
What is Not Achievement Growth

- In District A above, 65% of 7th graders scored at/above goal last year, 70% of 8th graders scored at/above goal this year.
- Jose scored at proficient in 5th grade and scored at proficient in 6th grade.
- Anna performed at the basic level in grade 3, and at proficient level in grade 4.
<table>
<thead>
<tr>
<th>Grade</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Different 3rd grade groups—across years

Same year—across grades

Same group—across grades & years
Achievement Growth in Connecticut

- CT vertical scales in use since 2008
 - Math grades 3-8
 - Reading/Language Arts grades 3-8
- Growth model based on the vertical scale
 - Incorporates vertical scale and achievement levels
- Offers school-level performance projections
- Assigns achievement growth targets to each student, school, and district
- Reports success in achieving growth targets
Gain Score Targets: Three Step Model

- **At/Above Goal**
- **Proficient**
- **Basic**
- **Below Basic**

Vertical Scale

- 380
- 410
- 440
- 470
- 500
- 530
- 560

GRADE

- 3
- 4
- 5
- 6
- 7
- 8

Score Targets:

- Below Basic: 430
- Basic: 459
- Proficient: 483
- At/Above Goal: 510, 534
CT Growth Model

- The model is based on the following:
 - All CT students are expected to perform at or above the goal level
 - Those who perform below goal are expected to make score gains in vertical scale units equivalent to 1/3 of the range between two achievement categories
 - Students below basic must make gains that take them to basic level next grade
CT Growth Model Applications

- CT growth model can be utilized in several ways by different groups of educators
- Teachers can use achievement growth targets as instructional goals.
- Administrators can use success rates to monitor the performance (percent met their target) of schools or districts
- Vertical scales can be used to monitor the achievement gap between subgroups
CT hopes to continue this growth model with SBAC assessments in the next generation